Hello SHINE

Signed Heterogeneous Information Network Embedding


speaker : Kevin Xu

Jump on the bandwagon?


  • Follow the crowd
  • What do people say
  • Who am I
  • What should I do?


  • Nature Language Processing
  • Sentiment Analyse
  • Avoid to speak the irony
  • Heterogeneous Information

    In order to increse the prediction accuracy

    Sentiment network

    Positive or negative sentiment link for someone.


    e.g., Triangle love

    Social network


  • Node : user (pages, image, post...)
  • Edge : Be friends (like, comment, share...)
  • Field : info about node
  • We are in the same boat
  • source : https://developers.facebook.com/docs/graph-api?locale=zh_TW

    Profile network


  • Bipartite graph
  • Recommend by user's profile
  • source : https://www.researchgate.net/profile/Nemi_Rathore

    Target

    Use SHINE to predict the sentiment link from the user to celebrities.


  • Heterogeneous info
  • Cold start scenario
  • Autoencoder


  • Encoder
  • Decoder
  • Error backpropagation
  • Dimension reduction
  • source : http://curiousily.com/

    Sentiment extraction

    Extract user's sentiment toward celebrities by SO scores.


  • Lexicon ([hate], negative)
  • Normalized to [-1, 1]
  • Validate the effect
  • SHINE network


  • One-hot encoding
  • 4-layer hidden (Inputs : 1000 units)
  • Aggregation function : Concatenation (100 units)
  • Similarity : inner product
  • Optimizer : AdaGrad
  • source : https://arxiv.org/abs/1712.00732

    Loss function


  • Reconstruction
  • Penalty for loss
  • source : https://arxiv.org/abs/1712.00732

    Hyper-parameters


  • Cross-validation
  • Trade-off
  • source : https://arxiv.org/abs/1712.00732

    Datasets


  • 3 bilion tweets on Weibo
  • Define the celebrities
  • Weibo-STC (20% for balanced test set)
  • Wiki-RfA (validate)
  • Baselines


  • LINE
  • Node2vec
  • SDNE
  • FxG
  • LIBFM
  • Performance

    Link prediction


  • Accuracy
  • Micro-Fi (unbalanced)
  • source : https://arxiv.org/abs/1712.00732

    Performance

    Node recommendation


  • Precision@K
  • Recall@K (sensitive)
  • source : https://arxiv.org/abs/1712.00732

    Furthermore


  • Over-fitting
  • Application
  • source : https://towardsdatascience.com/@ardendertat

    Thanks